International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017 JSS Academy of Technical Education Vol. 4, Special Issue 8, May 2017

Connecting Social Media to E-commerce for Cold Start Product Recommendation using **Microblogging Information**

Rohan Pawar N¹, Mr. Mohan Kumar K N², Vidyasagar G N³

Dept. of CSE, SJBIT, Bangalore, Karnataka, India^{1,2,3}

Abstract: This Decade, the boundaries between e-commerce and social networking have become increasingly blurred. Lots of e-commerce web Application support the process of social login where users can sign on the websites using their social network username and password authentication such as their Twitter or Facebook accounts. Social Network users can also post their newly purchased products on microblogs with links to the e-commerce product web pages. In this paper, we propose a novel solution for cross-site cold-start product recommendation. We aim to recommend ecommerce product from e-commerce websites to users at social networking websites in "cold-start" situations. Coldstart situation is a problem which has rarely been explored before. A major challenge is how to leverage knowledge extracted from social networking sites for cross-site cold-start product recommendation. We propose to use the linked users across social networking sites and e-commerce websites as a bridge to map users' social networking features to another feature representation for product recommendation. In specific, we propose learning both users' and products' feature representations from data collected from e-commerce websites using recurrent neural networks and then apply a modified gradient boosting trees method to transform users' social networking features into user embeddings. We then develop a feature-based matrix factorization approach which can leverage the learnt user embeddings for cold-start product recommendation. Experimental results on a large dataset constructed from the microblogging service FACEBOOK and the largest e-commerce website AMAZON have shown the effectiveness of our proposed framework.

Keyword: Cold start, Product Recommendation, E-commerce, Micro-blogs, Product Demography, Data mining, Information Search.

1. INTRODUCTON

In these days, product recommendation is a very important **2.10pportunity** area to concentrates in increased sales for any ecommerce **Recommendation: Right Product, Right Time Author:** website. For example, Netflix has re-leased an interesting Jian Wang, Yi Zhang fact that about 75% of its subscriber's watches are from This paper studies the new problem: how to recommend recommendations system. There are many algorithms the right product at the right time? We adapt the which focus on connecting the social media to ecommerce proportional hazards modeling approach in survival but none are focused on product recommendation by analysis to the recommendation research field and propose leveraging the social media information like demographic, a new opportunity model to explicitly incorporate time in micro-blogs, location, etc.

Recommender systems currently used, focus on solving the information overload problem, by providing users with personalized and accurate information services. Typically, recommendation systems which use collaborative filtering, can automatically predict the need of an active user by collecting rating information from other similar users or items.

Another way of recommending products is based on online reviews a purchaser leaves after a purchase and has his/her feedback. The information from the product reviews can be used by analyzing the knowledge hidden in it. But, this technique cannot address the Cold Start situations when there are no purchases or very less purchases for a start-up e-commerce website.

2. LITERATURE SURVEY

Models for **E-commerce**

an e-commerce recommender system. The new model estimates the joint probability of a user making a followup purchase of a particular product at a particular time.

This joint purchase probability can be leveraged by recommender systems in various scenarios, including the zero-query pull-based recommendation scenario (e.g. recommendation on an e-commerce web site) and a proactive push-based promotion scenario (e.g. email or text message based marketing). We evaluate the opportunity modeling approach with multiple metrics. Experimental results on a data collected by a real-world ecommerce website(shop.com) show that it can predict a user's follow-up purchase behavior at a time with descent accuracy. In addition, the opportunity model significantly improves the conversion rate in pull-based systems and the user satisfaction/utility in push-based systems

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education

Vol. 4, Special Issue 8, May 2017

Product recommender systems are often deployed by ecommerce websites to improve user experience and The boundary between e-commerce and social networking increase sales. However, recommendation is limited by the product information hosted in those e-commerce sites and has many of the traits of social networks, including realis only triggered when users are performing e-commerce activities. In this paper, we develop a novel product recommender system called METIS, a Merchant Intelligence Recommender System, which detects users' purchase intents from their microblogs in near real-time and makes product recommendation based on matching the users' demographic information extracted from their public profiles with product demographics learned from microblogs and online reviews. METIS distinguishes itself from traditional product recommender systems in the information, etc. to address the product recommendation. following aspects: 1) METIS was developed based on a microblogging service platform. As such, it is not limited by the information available in any specific e-commerce i.e., in "cold-start" situations. We called it cold-start website. In addition, METIS is able to track users' purchase intents in near realtime and make recommendations accordingly. 2) In METIS, product recommendation is framed as a learning to rank problem. Users' characteristics extracted from their public profiles in microblogs and products' demographics learned from both online product reviews and microblogs are fed into learning to rank algorithms for product recommendation.

We have evaluated our system in a large dataset crawled from Sina Weibo. The experimental results have verified the feasibility and effectiveness of our system. We have also made a demo version of our system publicly available and have implemented a live system which allows registered users to receive recommendations in real time

2.3 Retail Sales Prediction and Item Recommendations Using Customer Demographics at Store Level Author: Michael Giering

This paper outlines a retail sales prediction and product recommendation system that was implemented for a chain of retail stores. The relative importance of consumer demographic characteristics for accurately modeling the sales of each customer type are derived and implemented in the model. Data consisted of daily sales information for 600 products at the store level, broken out over a set of non-overlapping customer types. A recommender system was built based on a fast-online thin Singular Value Decomposition. It is shown that modeling data at a finer level of detail by clustering across customer types and demographics yields improved performance compared to a single aggregate model built for the entire dataset. Details of the system implementation are described and practical issues that arise in such real-world applications are discussed. Preliminary results from test stores over a oneyear period indicate that the system resulted in significantly increased sales and improved efficiencies. A brief overview of how the primary methods discussed here

Know What You Want to Buy: A were extended to a much larger data set is given to **Product** confirm and illustrate the scalability of this approach.

3. PROPOSED SYSTEM

has become blurred. E-commerce websites such as Bay time updates and interaction between buyers and sellers. Some e-commerce websites also support the mechanism of social login, which allows new users to sign in with their existing login information from social networking. None of the e-commerce systems have adopted the use of microblogging and other demographic information for cold start situation where a customer to ecommerce site is offered suggestion of the products. We are focused on the details of the microblogs, demographic information, location In this paper, we address the problem of recommending products to users who do not have any purchase records, product recommender.

Fig -1: System Architecture

The above fig 1 shows that combining the socio and ecommerce. This system gives the more accuracy for analyzing the both technology. In this system user can user both website same location. If any user can purchase the any product from e-commerce website. But user use that product and he allow to give the review of the product, like how it is, how work functionality etc. so he can send review of the product. Once user send that review then that post is updated on social to recommendation friends.

Due to the heterogeneous type of the data in the social network posts, information extracted from micro-blogs cannot be used directly for product recommendation on

IARJSET

of

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education

Vol. 4, Special Issue 8, May 2017

Fig -2 flow cycle for product recommendation to the customer

4. EXTRACTING AND REPRESENTING MICROBLOGGING ATTRIBUTES

Our solution to microblogging feature learning consists of three steps:

Prepare a list of potentially useful microblogging attributes and construct the microblogging feature vector au for each linked user u 2UL;

Generate distributed feature representations fvugu2U using the information from all the users U on the ecommerce website through deep learning;

Learn the mapping function, $f(a_u) \rightarrow v_u$, which transforms the microblogging attribute information auto the distributed feature representations v_{μ} in the second step. It utilizes the feature representation pairs $\{a_n, v_n\}$ of all the linked users $u \in U^L$ as training data.

4.1 MICROBLOGGING FEATURE SELECTION

In this section, we study how to extract rich user information from microblogs to construct au for a

4.1.1DEMOGRAPHIC ATTRIBUTES

"a Demographic attributes have been shown to be very important in marketing, especially in product adoption for consumers. Following our previous study, we identify six major demographic attributes: gender, age, marital status, education, career and interests.

4.1.2 TEXT ATTRIBUTES

Recent studies have revealed that microblogs contain rich commercial intents of users. Also, users' microblogs often reflect their opinions and interests towards certain topics. As such, we expect a potential correlation between text attributes and users' purchase preferences. We perform Chinese word segmentation and stop word removal before extracting two types of text attributes below. Topic distributions. Seroussi et al. proposed to extract topics from usergenerated text using the Latent Dirichlet Allocation (LDA) model for recommendation tasks. Follow the same idea, we first aggregate all the microblogs by a user into a document, and then run the standard LDA to obtain the topic distributions for each user. The benefits of topics distributions over keywords are twofold. First, the number of topics is usually set to 50 200 in practice, which largely reduces the number of dimensions to work with. Second, topic models generate condense and meaningful semantic units, which are easier to interpret and understand than keywords. Word embeddings. Standard topic models assume individual words are exchangeable, which is essentially the same as the bag-of-words model assumption. Word representations or embeddings learned to use neural language models help addressing the problem of traditional bag-of-word approaches which fail to capture words' contextual semantics. In word embeddings, each dimension represents a latent feature of the word and semantically similar words are close in the latent space. We employ the Skip-gram model implemented by the tool word2vec4 to learn distributed representations of words. Finally, we average the word vectors of all the tokens in a user's published document as the user's embedding vector.

4.1.3 NETWORK ATTRIBUTES

In the online social media space, it is often observed that users connected with each other (e.g., through following links) are likely to share similar interests. As such, we can parse out latent user groups by the users' following patterns assuming that users in the same group share similar purchase preferences. Latent group preference. Since it is infeasible to consider all users on WEIBO and only keeping the top users with the most followers would potentially miss interesting information, we propose to use

26

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education Vol. 4, Special Issue 8, May 2017

topic models to learn latent groups of following sasin tokens. A user ID is placed at the beginning of each [10].Wetreatafollowinguserasatokenandaggregateallthefoll sentence, and both user IDs and product IDs are treated as owingsofauserasanindividual document. In this way, we can word tokens in the learning process. During training, for extract latent user groups sharing similar interests (called "following topics"), and we represent each user as a preference distribution over these latent groups

TABLE 1 Categorization of the Microblogging Features

Categories	Features
Demographic	Gender (2), Age (6), Marital status (10),
Attributes	Education (7), Career (9), Interests (6)
Text	Topic distributions (50),
Attributes	Word embeddings (50)
Network Attributes	Latent group preference (50)
Temporal	Daily activity distribution (24),
Attributes	Weekly activity distribution (7)

The number of feature dimensions are shown in parentheses.

4.1.4TEMPERAL ATTRIBUTES

Temporal activity patterns are also considered since they reflect the living habits and lifestyles of the microblogging users to some extent. As such, there might exist correlations between temporal activities patterns and Temporal users' purchase preferences. activity distributions. We consider two types of temporal activity distributions, namely daily activity distributions and weekly activity distributions. The daily activity distribution of a user is characterized by a distribution of 24 ratios, and the Ith ratio indicates the average proportion of tweets published within the ith hour of a day by the user; similarly weekly activity distribution of a user is characterized by a distribution of seven ratios, and the ith ratio indicates the average proportion of tweets published within the ith day of a week by the user. We summarize all types of features in above table.

5. DISTRIBUTED REPRESENTATION LEARNING WITH RECURRENT NEUTRAL NETWORKS

We use recently proposed methods in learning word embeddings using recurrent neutral networks to learn user embeddings or distributed representation of user. We first discuss how to learn product embeddings and in the later part the word embeddings. There are two simple recurrent neutral architectures to train product embeddings, the Continuous Bag-Of-Words model (CBOW) and the Skipgram model [1]. The major difference between these two architectures is in the direction of prediction: CBOW predicts the current product using the surrounding context, while Skip-gram predicts the context with the current product. In our evaluations, the context is defined as a window of size 4 surrounding a target product which contains two products purchased before and two after. With product embeddings, if we can learn user embeddings in a similar way, then we can explore the related representations of a user and products for product recommendation. The purchase history of a user is like a function, thus the name functional matrix factorization

each sentence, the sliding context window will always include the first word (i.e., user ID) in the sentence. In this way, a user ID is essentially always associated with a set of her purchase records (of 4 products at a time).

Advantages:

Gain customer information like what they are, what they like, etc. which can transform our business. Increase brand awareness i.e. targets more people to our ecommerce. Run customer targeted ads with real time results. Generate valuable leads i.e. transform ad viewer to a customer. Increase website traffic and search ranking. Find out information about how competitor is performing and change ourselves according to that. Share content faster and easier.

Fig. 2. Two architectures to learn both product and user embeddings. Here u denote a user ID. The major difference between para2vec and word2vec lies in the incorporation of userID as additional context

6. FUNCTIONAL MATRIX FACTORISATION

Now we consider constructing the interview process for cold-start collaborative filtering. Assume that a new user registers at the recommendation system and nothing is known about her. To capture the preferences of the user, the system initiates several interview questions to query the responses from the user. Based on the responses, the system constructs a profile for the user and provides recommendations accordingly. In the plain matrix factorization model described in Section 3.1, the user profile ui is estimated by optimizing the ℓ^2 loss on the history ratings rij. This model does not directly apply to cold-start settings because no rating is observed for the new user prior to the interview process. To build user profiles adaptively according to the user's responses in the course of the interview process, we propose to parameterize the user profile ui in such a way that the profile ui is tied to user i's responses in the form of a "sentence" having of a sequence of product IDs as word (FMF). More precisely, assume there are P possible

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

NCAIT 2017

JSS Academy of Technical Education Vol. 4, Special Issue 8, May 2017

optimization problem:

$$T, V = \underset{T \in \mathcal{H}, V}{\operatorname{argmin}} \sum_{(i,j) \in O} (r_{ij} - v_j^T T(a_i))^2 + \lambda \|V\|^2, \quad (1)$$

rank matrix factorization model, we have the following

where V = (v1, ..., vM) is the matrix of all item profiles, H is the space from which the function T(a) is selected and the second term is the regularization term. Several issues need to be addressed in order to construct the interview process by the above functional matrix factorization. First, the number of all possible interview questions can be quite large (e.g. up to millions of items in movie recommendation); yet a user is only patient enough to answer a few interview questions. Second, the interview process should be adaptive to user's responses, in other words, a follow-up question should be selected based on the user's responses to the previous questions. Therefore, the selection process should be efficient to generate interview questions in real time after the function T(a) is constructed. In addition, since we allow a user to choose "Unknown "to the interview questions, we need to deal with such missing values as well. Following prior works of [8,20], we use a ternary decision tree to represent T(a). Specifically, each node of the decision tree corresponds to an interview question and has three child nodes. When the user answers the interview question, the user is directed to one of its three child nodes according to her answer. As a result, each user follows a path from the root node to a leaf node during the interview process. A user profile is estimated at each leaf node based on the users' responses, i.e., T(a). The number of interview questions presented to any user is bounded by the depth of the decision tree, generally a small number determined by the system. Also, non-responses to a question can be handled easily in the decision tree with the introduction of a "Unknown" branch.

7. CONCLUSIONS

We study the new problem: how to recommend the right product at the right time? Experimental results on a data collected by a user e-commerce website show that it can predict a user's follow-up purchase behavior at a particular time with descent accuracy. Using a set of linked users across both e-commerce websites and social networking sites as a bridge, we can learn feature prediction of multiple users.

ACKNOWLEDGEMENT

The authors thank unknown viewers for having time to go through about our paper. We would like to thank to all teachers who helped us to get information and friends for questions. And we tie the profile to the answers by support and we would like to thank our project coordinator

REFERENCES

- ratings K. To this end, substituting ui = T(ai) into the low- [1]. J. Wang and Y. Zhang, "Opportunity model for E-commerce recommendation: Right product; right time," in Proc. 36th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2013, pp. 303-312.
 - [2]. Opportunity Models for E-commerce Recommendation: Right Product, Right Time Jian Wang, Yi Zhang School of Engineering University of California
 - [3]. Retail Sales Prediction and Item Recommendations Using Customer Demographics at Store Level Michael Giering
 - Connecting Social Media to E-Commerce: Cold-Start Product [4]. Recommendation Using Microblogging Information.Wayne Xin Zhao, Member, IEEE, Sui Li, Yulan He, Edward Y. Chang, Ji-Rong Wen, Senior Member, IEEE, and Xiaoming Li, Senior Member, IEEE
 - [5]. Connecting Social Media to ECommerce System. Prof. Milind Hegade, Shital Arjun Salke, Snehal Mohan Shinde, Priyanka Gautam More, Samruddhi Vinod Shinde
 - [6]. K. Zhou, S. Yang, and H. Zha, "Functional matrix factorizations for Cold-start recommendation," in Proc. 34th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2011, pp. 315-324